

WT99P4C5-S1 Development Board Guide

Disclaimer and Copyright Notice

Information in this document, including the URL addresses for reference, is subject to change without notice.

This document is provided "as is" without warranty of any kind, including any warranty of merchantability, fitness for a particular purpose, or non-infringement, and any warranty that any proposal, specification, or sample is referred to elsewhere. this document disclaims all liability, including liability for infringement of any patent, arising out of the use of the information in this document. This document does not grant any license, express or implied, by estoppel or otherwise, to use any intellectual property.

The Wi-Fi Alliance member logo is owned by the Wi-Fi Alliance.

All trade names, trademarks and registered trademarks mentioned herein are the property of their respective owners and are hereby acknowledged.

Notice

The content of this manual is subject to change due to product version upgrade or other reasons. WIRELESS-TAG Technology Co., limited reserves the right to modify the contents of this manual without any notice or prompting. Ltd. makes every effort to provide accurate information in this manual, but WIRELESS-TAG Technology Co., limited does not ensure that the contents of the manual are completely free of errors, and all statements, information and recommendations in this manual do not constitute any express or implied warranty.

Revision History

Version	Date	Developed/changed content	Modifier By	Auditor
V1.0	2025-3-14	Creating Documents	Pail	Louie
V1.1	2025-5-26	 Updated 1.1 Development Board Overview, ESP32-C5-WROOM-1 is standard. Updated WT99P4C5-S1 product image in the document. Updated the description of ESP32-C5-WROOM-1 in 2.1 Component Introduction. Updated the link to Wire-less Tag GitHub Examples in 2.4 Software Setup. 	Pail	Louie
V1.2	2025-6-06	1. Correct the description of the ESP32-P4 frequency of 400 MHz in the article to 360 MHz. 2. Updates Related Documents: WT99P4C5-S1 schematic, WT0132P4-A1 datasheet, ESP32-C5-WROOM-1 datasheet.	Pail	Louie

Contents

1. Development Board Introduction	5
1.1. Development Board Overview	5
1.2. Development Board Pictures	5
2. Getting Started	6
2.1. Component Introduction	6
2.2. Preliminary	10
2.3. Hardware Setup	
2.4. Software Setup	10
3. Hardware Reference	10
3.1. Block Diagram	10
3.2 Header Block	11
4. Related Documents	14
5. Contact Us	
Wirele -	

1. Development Board Introduction

1.1. Development Board Overview

WT99P4C5-S1 development board is a multimedia development board based on WT0132P4-A1 core board launched by Wireless-tag Technology Co., Limited.The WT0132P4-A1 core board based on Espressif ESP32-P4 series chip, featuring a dual-core 360 MHz RISC-V processor and 32 MB PSRAM.Additionally, the ESP32-P4 supports various peripherals such as USB 2.0, MIPI-CSI and MIPI-DSI, making it ideal for cost-effective, low-power multimedia product development.

Espressif Wi-Fi & BLE module ESP32-C5-WROOM-1, which communicates with the WT0132P4-A1 core board, has been installed on the development board for developing Wi-Fi and Bluetooth communication on the board. It also supports Wireless-tag self-developed 7-inch capacitive touchscreen to enhance the development experience. This board is well-suited for prototyping IPC, HMI, and AloT products.

Most pins of the core board are routed to headers, allowing developers to easily connect external peripherals via jumpers or use the board on a breadboard.

1.2. Development Board Pictures

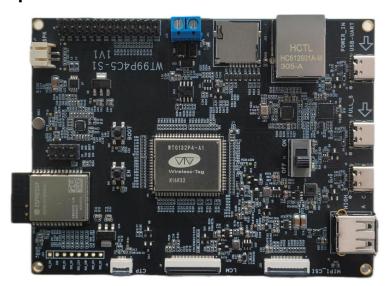


Figure 1: WT99P4C5-S1 Development Board (front)

2. Getting Started

This section provides a brief introduction to WT99P4C5-S1 development board, instructions on how to do the initial hardware setup and how to flash firmware onto it.

2.1. Component Introduction

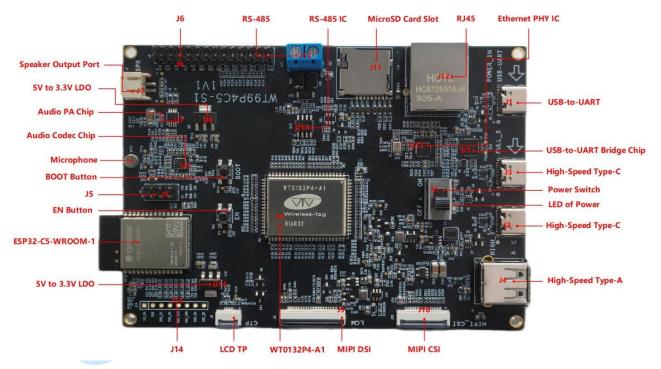


Figure 2: WT99P4C5-S1 Development Board Component Description

The key components of the board are described in a clockwise direction.

Key Component	Description
	Part of available GPIO pins are broken out to the header
J6	block J6 for easy interfacing.For more details,see Header
	Block.
RS-485	RS-485 interface connected to the interface of RS-485
Interface	Chip.
	SIT3088EESA is an RS-485 transceiver that fully meets
DS 485 Chin	the requirements of the TIA/EIA-485 standard and
RS-485 Chip	consists of a driver and a receiver that can be
	independently enabled and disabled.It can realize

WhiteEed 17to Winder 100 of Bovelopinion Board Guido			
	14Mbps error-free data transmission.It interfaces with the		
	WT0132P4-A1 over UART.		
MicroSD Card	The development board supports a MicroSD card in 4-bit		
Slot	mode and can store or play audio files from the MicroSD		
Slot	card.		
RJ45 Ethernet	An Ethernet Port supporting 10/100 Mbps adaptive.		
Port	All Ethernet Fort supporting 10/100 Mbps adaptive.		
Ethernet PHY IC	Ethernet PHY chip connected to the WT0132P4-A1		
Linemeti III IO	EMAC RMII interface and RJ45 Ethernet Port.		
USB-to-UART	The USB Type-C port can be used to power the		
Port	board,flash firmware to the chip,and communicate with		
Fort	the WT0132P4-A1 via the USB-to-UART Bridge Chip.		
	CP2102N is a single USB-to-UART bridge chip		
USB-to-UART	connected to the WT0132P4-A1 UART0		
Bridge Chip	interface,ESP_EN,GPIO35(strapping pin),It provides		
Bridge Chip	firmware downloading and debugging,supporting the		
	automatic download functionality.		
	The USB 2.0 Type-C Port connected to the USB 2.0 OTG		
	Full-Speed interface of the ESP32-P4 chip on the		
Full-Speed	WT0132P4-A1 core board.When communicating with		
USB 2.0 Type-C	other devices via this port, ESP32-P4 acts as a USB		
	device connecting to a USB host,which can also be used		
	as the power supply interface of the development board.		
	Power On/Off Switch.Toggling toward the ON sign		
Power Switch	powers the board on (5 V),toggling away from the ON		
	sign powers the board off.		
	This LED lights up when the development board is		
LED Of Power	connected to the power supply through any of the power		
	supply connectors.		

	The USB 2.0 Type-C Port connected to the USB 2.0 OTG
	High-Speed interface of the ESP32-P4 chip on the
	WT0132P4-A1 core board.When communicating with
Hink On and	other devices via this port, ESP32-P4 acts as a USB
High-Speed	device connecting to a USB host,which can also be used
USB 2.0 Type-C	as the power supply interface of the development
	board.Please note that High-Speed USB 2.0 Type-C Port
	and High-Speed USB 2.0 Type-A Port cannot be used
	simultaneously.
	The USB 2.0 Type-A Port connected to the USB 2.0 OTG
	High-Speed interface of the ESP32-P4 chip on the
High Spood	WT0132P4-A1 core board.When communicating with
High-Speed USB 2.0 Type-A	other devices via this port,ESP32-P4 acts as a USB host
03b 2.0 Type-A	and supply power to the other devices.Please note that
	High-Speed USB 2.0 Type-C Port and High-Speed USB
	2.0 Type-A Port cannot be used simultaneously.
	MIPI CSI FPC connector is used for connecting external
	camera module to enable image transmission.For
MIPI CSI	details, please refer to specification in Related
	Documents.FPC specifications:0.5 mm pitch,0.3 mm pin
	width,0.3 mm thickness,22 pins.
	MIPI CSI FPC connector is used for connecting
MIPI DSI	displays.For details, please refer to Specification in
Will 1 BOI	Related Documents.FPC specifications:0.5 mm pitch,0.3
	mm pin width,0.3 mm thickness,30 pins.
	A high-performance Core-Board based on Espressif
WT0132P4-A1	ESP32-P4 with powerful image and voice processing
	capabilities.
LCD TP	LCM TP connector is used for connecting displays touch

	functions.For details,please refer to Specification in
	Related Documents.FPC specifications:0.5 mm pitch,0.3
	mm pin width,0.3 mm thickness,6 pins.
	Part of available GPIO pins are broken out to the header
J14	block J14 for easy interfacing.For more details,see
	Header Block.
5)/ to 2 2)/ I DO	A power regulator that converts a 5 V supply to a 3.3 V
5V to 3.3V LDO	output.
	Espressif ESP32-C5-WROOM-1-N8R4 modules, support
ESP32-C5-WR	5GHz & 2.4GHz dual-band Wi-Fi6 and BLE 5.3, provide
OOM-1	communication capability for onboard core board
OOIVI-1	WT0132P4-A1.Detailed information on the modules can
	be found in Related Documents.
EN Button	Resets the board.
	Part of available GPIO pins of ESP32-C5-WROOM-1 are
J5	broken out to the header block J5 for easy interfacing.For
	more details,see Header Block.
	The boot mode control button.Press the EN Button while
BOOT Button	holding down the Boot Button to reset WT0132P4-A1
BOOT Button	
	and enter firmware download mode.Firmware can then
	and enter firmware download mode.Firmware can then be downloaded to SPI flash via the USB-to-UART Port.
Microphone	
Microphone	be downloaded to SPI flash via the USB-to-UART Port.
Microphone	be downloaded to SPI flash via the USB-to-UART Port. Onboard microphone connected to the interface of Audio
Microphone	be downloaded to SPI flash via the USB-to-UART Port. Onboard microphone connected to the interface of Audio Codec Chip.
Microphone Audio Codec	be downloaded to SPI flash via the USB-to-UART Port. Onboard microphone connected to the interface of Audio Codec Chip. ES8311 is a low-power mono audio codec chip.lt
·	be downloaded to SPI flash via the USB-to-UART Port. Onboard microphone connected to the interface of Audio Codec Chip. ES8311 is a low-power mono audio codec chip.lt includes a single-channel ADC,a single-channel DAC,a
Audio Codec	be downloaded to SPI flash via the USB-to-UART Port. Onboard microphone connected to the interface of Audio Codec Chip. ES8311 is a low-power mono audio codec chip.lt includes a single-channel ADC,a single-channel DAC,a low-noise pre-amplifier,a headphone driver,digital sound

55

	application.
	NS4150B is an EMI-compliant,3 W mono Class D audio
Audio PA Chip	power amplifier that amplifies audio signals from the
	audio codec chip to drive speakers.
5)/to 2 2)/1 DO	A power regulator that converts a 5 V supply to a 3.3 V
5V to 3.3V LDO	output.
Speaker Output	This port is used to connect a speaker. The maximum
Port	output power can drive a 4 Ω,3 W speaker.

2.2. Preliminary

- WT99P4C5-S1
- USB-C cables
- Computer running Windows, Linux, or macOS
- LCD (Optional)
- Camera (Optional)
- MicroSD Card (Optional)

2.3. Hardware Setup

Connect the WT99P4C5-S1 to your computer using a USB cable. The board can be powered through any of the USB Type-C ports. The USB-to-UART Port is recommended for flashing firmware and debugging.

2.4. Software Setup

To set up your development environment and flash an application example onto your board, please follow the instructions in ESP-IDF Get Started. Or go to Wireless-Tag GitHub Examples, development board application examples have been stored, download compile and burn the application to the development board to start development.

3. Hardware Reference

3.1. Block Diagram

The block diagram below shows the components of WT99P4C5-S1 and

their interconnections.

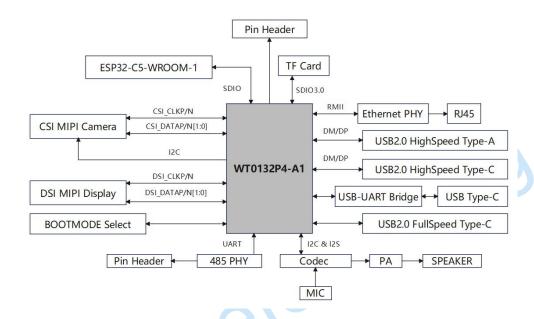


Figure 3: WT99P4C5-S1 Block Diagram

3.2. Header Block

The tables below provide the Name and Function of the pin header(J14、J5、J6), The pin header names are shown in Figure WT99P4C5-S1-front.

Table 1: Detailed Functional Description of J14 Pin Header

No.	Name	Function
1	C5_EN	Enable ESP32-C5 Moudle (10K pull-up)
2	IO2	ESP32-C5-WROOM-1/1U GPIO2
3	SD2_D1	GPIO40, SD1_CDATA1_PAD, GMAC_PHY_TXEN_PAD
4	SD2_D0	GPIO39, SD1_CDATA0_PAD, REF_50M_CLK_PAD
5	SD2_CLK	GPIO43, SD1_CCLK_PAD, GMAC_PHY_TXER_PAD
6	SD2_CMD	GPIO44, SD1_CCMD_PAD, GMAC_RMII_CLK_PAD
7	SD2_D3	GPIO42, SD1_CDATA3_PAD, GMAC_PHY_TXD1_PAD
8	SD2_D2	GPIO41, SD1_CDATA2_PAD, GMAC_PHY_TXD0_PAD

Table 2: Detailed Functional Description of J5 Pin Header

No.	Name	Function
1	EN	Enable ESP32-C5 Chip (10K pull-up)

2	VDD	3.3 V Power
3	TXD	U0TXD, GPIO11
4	GND	GND
5	RXD	U0RXD, GPIO12
6	воот	GPIO28
7	104	MTCK, GPIO4, LP_GPIO4, LP_UART_RXD, ADC1_CH3,
/	104	FSPIHD
8	IO5	MTDO, GPIO5, LP_GPIO5, LP_UART_TXD, ADC1_CH4,
		FSPIWP

Table 3: Detailed Functional Description of J6 Pin Arrangement

No.	Name	Function
1	3V3	3.3 V Power
2	NC	NC
3	3V3	3.3 V Power
4	100	GPIO0,LP_GPIO0,XTAL_32K_N
5	5V	5 V Power
6	IO1	GPIO1,LP_GPIO1,XTAL_32K_P
7	5V	5 V Power
8	IO2	GPIO2, MTCK, LP_GPIO2, TOUCH_CHANNEL0
9	NC	NC
10	104	GPIO4, MTMS, LP_GPIO4, TOUCH_CHANNEL2
11	GND	GND
12	IO5	GPIO5, MTDO, LP_GPIO5, TOUCH_CHANNEL3
13	GND	GND
14	IO6	GPIO6, SPI2_HOLD_PAD, LP_GPIO6,
14	100	TOUCH_CHANNEL4
15	GND	GND
16	107	GPIO7, SPI2_CS_PAD, LP_GPIO7, TOUCH_CHANNEL5
17	GND	GND

18	IO8	GPIO8, UART0_RTS_PAD, SPI2_D_PAD, LP_GPIO8,
	100	TOUCH_CHANNEL6
19	IO26	GPIO26, USB1P1_N1
20	1032	GPIO32, I3CMST_SCL, GPSPI SPI2 HOLD,
20	1032	EMAC RMII CLK,DBG_PSRAM_DQ4
21	1027	GPIO27, USB1P1_P1
22	1022	GPIO33, I3CMST_SDA, GPSPI SPI2 WP,
22	IO33	EMAC PHY TXEN,DBG_PSRAM_DQ5
23	IO46	GPIO46, SD1_CDATA5_PAD, GMAC_PHY_RXD0_PAD
24	1026	GPIO36, GPSPI SPI2 IO6, EMAC PHY TXER,
24	IO36	DBG_PSRAM_DQS0
25	IO47	GPIO47, SD1_CDATA6_PAD, GMAC_PHY_RXD1_PAD
26	IO37	GPIO37, UART0_TXD, GPSPI SPI2 IO7
27	IO48	GPIO48, SD1_CDATA7_PAD, GMAC_PHY_RXER_PAD
28	1038	GPIO38, UART0_RXD, GPSPI SPI2 DQS

Table 4: Detailed Functional Description of RS-485

No.	Name	Function
1	485_B	Receiver Inverted Input and Driver Inverted Output
2	485_A	Receiver In-phase Input and Driver In-phase Output

4. Related Documents

WT99P4C5-S1 schematic: https://en.wireless-tag.com/product-item-66.html

WT0132P4-A1 datasheet: https://en.wireless-tag.com/product-item-56.html

ESP32-C5-WROOM-1 datasheet: ESP32-C5-WROOM-1.pdf

FPC Specification: FPC连接器规格书.pdf

5. Contact Us

Official website: www.wireless-tag.com

Contact Email: gtm@wireless-tag.com

January 1988. Technical support e-mail: technical@wireless-tag.com